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Abstract

Since the invention of the EEG, scientists have attempted to decipher the role of
different kinds of electrical neural activity. Using the Fourier transform, neurosci-
entists can convert neural time-series data into the power spectrum. However, it has
not been clear to researchers which spectral phenomena in the power spectrum are
most important. Researchers once believed that aperiodic (1/f) activity represented
only background noise and that it provided no value. We now know that it is related
to the E/I balance in neurons, where a higher aperiodic exponent corresponds
to greater inhibition, and a lower one corresponds to greater excitation. Further
research is needed to establish the significance of spectral phenomena in predicting
post-stimulus power, independent of other spectral features. Notably, Gyurkovics
et al. 2021 demonstrated that stimuli, specifically the visual oddball task, elicit
changes in 1/f spectra that are separable from event-related potentials (ERPs). In
this study, we replicate the findings from Gyurkovics et al. 2021. Our results
demonstrate that these effects hold in a different dataset: the aperiodic exponent in
the power spectrum shifts from pre- to post-stimulus, even when ERPs are removed,
and serves as a significant predictor of post-stimulus changes in the frequency do-
main. Thus, we contribute to the growing body of literature demonstrating that
aperiodic activity is a genuine and essential spectral phenomenon. Our verification
of Gyurkovics’s results using different data and ERPs underscores the reliability of
this effect. Verifying the relevance of aperiodic activity relates to a more general
issue: we must ensure that the features we measure in our data are significant and
relevant. This issue is meaningful across scientific disciplines.

1 Introdcution

It was long believed that anything outside classic oscillatory peaks was “just noise.” The non-
oscillatory portion of electrophysiological recordings was largely ignored, with researchers focusing
instead on narrowband rhythms (e.g., alpha, beta) (He, B.J., 2014). Only recently has the 1/f
component begun to receive serious attention. Voytek et al. (2015) were among the first to challenge
this assumption. Their study showed that the aperiodic exponent varies with age: older adults exhibit
a flatter exponent compared to the steeper one in younger adults. By demonstrating that the aperiodic
exponent changes across lifespan, this work opened the door to the idea that aperiodic activity
represents meaningful spectral phenomena. Gao et al. (2017) then linked aperiodic activity to the
balance between excitatory and inhibitory neuronal activity. Excitation makes neurons more likely
to fire action potentials, while inhibition makes them less likely to fire. This provided a biological
interpretation: the aperiodic slope could reflect this E/I balance, with a steeper slope indicating more
inhibition and a flatter slope indicating more excitation. This also coincided with the notion that
periodic and aperiodic components of neural time-series data should be separated. In 2020, Donoghue
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et al. introduced the FOOOF algorithm, which enables researchers to decompose the EEG power
spectrum into periodic and aperiodic components and efficiently compute the aperiodic slope.

Until recently, however, aperiodic activity was assumed to be static. Even Donoghue et al. noted that
FOOOF was designed under the assumption that the aperiodic component is stationary. Gyurkovics
et al. 2021 was one study that challenged this assumption by demonstrating that the aperiodic slope
changes in response to stimuli. Gyrukovvics, in his experiment used a visual oddball paradigm. In
our study, we replicated Gyurkovics et al.’s findings using a different visual oddball dataset. Our goal
was to test the robustness of their conclusion that the aperiodic slope genuinely changes in response
to a stimulus.

We replicated their methods in Python, applying the same approach: calculating the ERP across trials,
converting the ERP to the frequency domain, and subtracting its power spectrum from the averaged
post-event trial windows. This allowed us to compare the post-stimulus slope (after ERP subtraction)
to the pre-stimulus slope. In doing so, we showed—as Gyurkovics et al. did—that the aperiodic slope
changes following stimulus presentation, independent of the ERP, highlighting that it is more than
just background noise. Modeling further supported this finding. Gyurkovics et al. introduced three
models to predict post-stimulus power spectra, each incorporating different spectral features. Model
3, which included the aperiodic component, was the most accurate. In our replication, Model 3 again
most accurately predicted post-stimulus power across frequencies, likely because it incorporated the
most complete spectral information.

In conclusion, we confirmed that the EEG power spectrum steepens following stimulus onset, even
after removing the ERP component. Moreover, we found that using only the ERP and pre-stimulus
power to predict post-stimulus spectra is insufficient; the aperiodic slope must be included. Our
results support the robustness of Gyurkovics et al.’s findings and further validate the importance of
considering aperiodic activity as a meaningful component of EEG analysis.

2 Methods

2.0.1 Open Data Sources

Data was gathered from OSF, a website featuring open EEG datasets for researchers. Specifically,
the data from a project titled ERP CORE (Kappenman et al. 2020). A paper that created optimized
paradigms for different ERPs so that there could be more standardization and reproducibility in the
space of EEG data analysis. Specifically, the P3 ERP, visual oddball paradigm experimental setup
was used. The total number of participants who provided informed consent was n = 40 (average
age, 21.5 years; 25 female, 15 male) from the University of California, Davis. Participants were
neurotypical (normal color perception and vision), which was necessary for the task, recorded using
a standard 10-20 montage with 21 electrode positions, including 19 active scalp sites (Kappenman
et al. 2020). The FDT and SET files that were used were already fully preprocessed by the
researchers. Preprocessing steps included downsampling, high-pass filtering, and epoching the
continuous experimental recording. The number of participants included in the analysis (n = 20) was
used to account for script running times.

2.1 Task Description

Kappenman et al. (2020) adapted a visual oddball task from Luck et al. (2009), which is designed to
elicit the P300 ERP, a response to novel stimuli, and referred to as the “Active Visual Oddball P3”.
Letters (A, B, C, D, E) are flashed on a screen (p = .2 for each letter). In each testing window, one
letter is chosen as the target letter and flashed; participants then press a button in response to that
letter. Letters flashed on the screen for 200 ms with intervals of 1200ms-1400ms in which a white
fixation dot was shown. There was a total of 200 oddball trials per participant recorded at a 256Hz
sampling frequency, divided into four 50-trial blocks in which the target letter changed.

2.2 Data Analysis

2.2.1 EEG Preprocessing and Spectral/ Aperiodic Analysis Pipeline

To replicate the results from Gyurkovics et al. (2021), we extracted aperiodic and offset values marked
by whether they were target or non-target letters (frequent-rare, rare-frequent, frequent-frequent)
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for each participant and electrode. This allowed us to recreate figures 2B and 2C, which suggest
that stimuli induce changes in 1/f. First, we preprocessed the set files by matching IDs to target and
non-target letters (100 being frequent-rare, 200 being rare-frequent, and 300 being frequent-frequent),
allowing us to later filter by target type.

Now that epochs were classified by pip type, we looped through epochs that matched the pip type and
processed each participant’s electrode, slicing its epochs to 600ms to +600ms around the epoch. This
was necessary due to the constraints of the ERP CORE data set, where the epoch length of -1024
ms to +1024 ms from Gyurkovics would not work. Then, after slicing the epochs, we computed the
Fast Fourier Transform (FFT) on the pre- and post-time windows, as well as the FFT frequencies.
Averages were calculated across electrodes for the pre- and post-spectra, as well as the post-time
windows to compute the averaged post-time windows (ERP). The ERP was then subtracted from the
post-averaged spectra across electrodes to calculate the post-minus-ERP spectra. Lastly, FOOOF
was used to calculate exponent and offset values across averaged pre-, post-, and post-minus-ERP
spectra, and power indexed by pip type was saved out individually. This process was repeated for
every electrode, every participant, and every condition.

2.2.2 Permutation Testing

Permutation testing showed that the aperiodic shifts in the post-minus-ERP spectra were signifi-
cant. From recording all the post-minus-ERP exponent values obtained by performing FOOOF, we
conducted a two-tailed hypothesis test by flipping half the values(changing them from positive to
negative) and then averaging them; this was done 10,000 times to obtain a null distribution centered
around 0. If the null distribution were true, it would mean our observed mean for post-minus-pre
would be somewhere close to that distribution. However, if our observed value fell outside the 2.5%
(-0.11) and 97.5% (0.11) confidence intervals, then we could consider it significant. The process
of permuting the signs 10,000 times and comparing the null distribution to our observed value was
repeated individually for each pip type. The averaged values for all pip types were very significant:
1.51 for frequent-rare, 1.5 for rare-frequent, and 1.49 for frequent-frequent. This means there was a
significant aperiodic shift in the post-spectra, even after the ERP was subtracted.

Figure 1: Null Distribution of Exponent Values With Observed Means Shows Significance.

2.2.3 Violin Plot

A part of the procedure used to visualize the steepening of the aperiodic component after the stimulus
was presented. Since we had values separated by condition type, three separate but identical plots
were made. Mean values calculated from before (1.51 for frequent-rare, 1.5 for rare-frequent, and
1.49 for frequent-frequent) were combined with a strip plot showing the distribution of the exponent
values. The pre-spectra values of 1.1 indicate a significant steepening post-stimulus.

2.2.4 Model Creation

The goal of this section was to reconstruct the post-event EEG spectrum using the three different
models proposed by Gyurkoics et al. (2020). Model 1, the simplest, only incorporates the pre-event
spectrum as a predictor of the post-event spectrum; therefore, it was predicted that Model 1 would
be the worst-performing. Model 2 incorporated the ERP component into the reconstruction. With
the post spectra averaged, this component was added to the pre-event spectra to recreate Model 2. It
was predicted that this model would be the second-best performer, as it incorporates more spectral
information than Model 1. Lastly, Model 3 reconstructed post-power by modeling the sum of the three
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parts: pre, ERP, and simulated 1/f spectrum (Donoghue et al., 2020). The simulated 1/f spectrum
was created using pre- and post-event delta offset and exponent values. Delta values are calculated
by subtracting the pre-event value from the post-event value. Once these values were calculated for
exponent and offset, they were added to their corresponding pre-event values and saved as a tuple.
This tuple was then used to generate the power spectrum using the gen_power_spec FOOOF function.
Lastly, the same steps were used as before, where we added pre-event, ERP, and simulated power
together.

Model 1: Ŝpost = Spre

Model 2: Ŝpost = Spre + SERP

Model 3: Ŝpost = Spre + SERP + S1/f, ∆

Figure 2: Reconstruction of the post-stimulus power spectrum.

3 Results

3.1 Violin Plot

These violin plots show aperiodic exponent changes, pre and post-stimulus (as well as post-stimulus
with the ERP component subtracted). There is a pronounced exponent shift after stimuli are pre-
sented. Across pip types, the mean exponent values become increasingly hostile, corresponding
to a steepening of the power spectrum. The pre-exponential value of 1.35 decreases to 1.6 post
stimulus, and stays at 1.5 with the ERP component subtracted. Thus, ERP removal does not affect
the exponent value post-stimulus too significantly, as it is still more negative than the pre-stimulus
exponent by 0.4 points. This negative change post-stimulus is observed across all pip types, although
it is unclear whether it is more pronounced in the frequent-rare pip compared to the rare-frequent
and frequent-frequent types. A more pronounced negative change in the frequency-rare exponent
post-stimulus was the result observed by Gyurkovics. Thus, the main observable result from these
violin plots is that the post-minus-ERP distribution remains significantly lower, showing that the
exponent change is not solely an ERP artifact.

Figure 3: Exponent Values Remain Negative Even With ERP Removal.

3.2 Residual Plot

This plot illustrates residuals across the three models outlined in Gyurkovics, which predicted post-
simulus power. The purpose of these models was to gain a better understanding of what the spectral
features contributed most to the post-stimulus change. We can observe that the residual values in the
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delta band ( 0.5-4 Hz) for model 3 are substantially smaller than those of models 1 and 2. Between
3-5 Hz model 3 residuals never go above 0.5, while model 2 is 1.25 and model 1 is 2. The trend
appears to be that the more spectral features we add, the smaller the residuals, with model 3 (pre +
ERP ∆1/f ) being the best predictor of post-stimulus power, followed by model 2 (pre + ERP), which
is the second best predictor. However, its residuals are significantly larger in the delta frequency
range than those of model 3 (difference of more than 1). We fail to reject the null hypothesis that 1/f
aperiodic activity is an ERP artifact.

Figure 4: Model 3 Most Accurately Models Post-Stimulus Spectral Power.

4 Discussion

Exponent values reliably steepen post-stimulus (pre 1.35 → post 1.60), even after ERP removal
( 1.5), suggesting that 1/f spectral changes are not solely due to ERP artifacts. Rather, 1/f spectral
activity can be thought of as its own phenomenon equally changed by stimuli. Not only was the
stimulus-induced change in 1/f confirmed, but consistent negative exponent changes were visible
across all pip types, replicating the results of Gyurkovics. Regarding the violin plots, we can infer that
model 3 was the most effective, yielding the smallest residuals, particularly in the lower frequencies
(Theta frequency range). Smaller residuals in model 3 were also visible in the entire window (3 Hz <
26 Hz) compared to models 1 and 2, implying that 1/f spectral activity contributes significantly to
post-stimulus power. ERPs are not enough to simulate post-stimulus power.

We have added evidence to the importance of recognizing the aperiodic component in EEG spectral
analysis; however, our experiment has some limitations. For example, we were unable to substantiate
Gyurkovics’ claim that the frequent-rare pip type produced the largest exponent shift post-stimulus,
even after ERP subtraction. We need to conduct some statistical analysis to confirm which 1/f
spectral values are the largest across pips. Confirming this finding from the paper is important
because researchers are still uncertain whether stimulus-induced changes in 1/f noise are substantially
different across experimental conditions, such as those involving novel stimuli. Gyurkovics was able
to show that novel stimuli elicited a more negative exponential shift than other pip types. Moreover,
while we replicated the Gyrukovics’ experiment and findings, the discrepancy between the original
data set and our data set (visual oddball P3) allows room for error. For example, we were forced to
use a different epoch window (-600ms to 600ms) compared to Gyurkovics (-1024ms to +1024ms).
Due to the jittering in our dataset between stimuli (when letters were flashed on the screen), we
couldn’t use an epoch length of -1024ms to 1024ms. Discrepancies in window sizes are potentially
problematic because, to generate ERPs, you generally need larger epochs, and our total window size
of 1200 ms is substantially smaller compared to the 2028 ms used originally. The consequences of
our changes are that we were unable to generate frequencies of 0-3 Hz, which also leaves room for
error in the generation of our event-related potentials (ERPs). The limitations of our data analysis
leave some room for future research directions, such as experimenting with different ERPs to ensure
that stimulus-induced changes in 1/f spectral activity are robust and reliable. Currently, we can only
confirm these findings for a single ERP type: auditory oddball tasks, specifically when eliciting P3s.
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Next, these methods can be applied to other ERPs, such as the N170, an ERP elicited in oddball
visual tasks for faces (Bentin et al.1996). The more modalities we use to investigate whether stimuli
change 1/f exponents, the more robust the claim will be.

5 Conclusion

In summary, ERPs and aperiodic (non-oscillatory) exponents make similar contributions to post-
stimulus power. Although the changes in post-spectra are alike, our research has demonstrated that
they are distinct effects. Gyurkovics et al. showed that stimuli induced changes in the aperiodic
exponent in an auditory oddball task, and we have expanded the findings to auditory oddball tasks as
well. Replication was also done with an open data set (ERP CORE) and in a different programming
language (Python). Specifically, we have replicated findings that the steepening of post-spectra is
visible across all pip types (frequent or infrequent), and aperiodic slope changes are an essential
component in modeling post-stimulus power at all frequencies (3 < 25 Hz); however, we have not yet
quantified whether ERP or aperiodic components have more pronounced changes post stimuli as well
as wether condition — frequent or infrequent — has greater effect on one or the other.

Our research contributes to the growing body of literature that proves the relevance of non-oscillatory
components, such as aperiodic slope (Voytek et al. 2015). As scientists, we must be cautious that
confounding variables do not influence the changes in the variables we claim to study. By subtracting
the ERP from the post-stimulus windows, we observed that there was still a significant difference in
the aperiodic exponent from pre to post. Only through this type of testing can we truly understand the
effects of the variables we investigate. Another implication of this research is that replicability is not
always prioritized in the EEG community. Researchers seldom prioritize replication verification, so
by validating Gyurkovics’ study, we set a precedent for future researchers to do the same. Replication
of existing findings strengthens their reliability and our confidence that they can be applied to different
datasets.
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